Existence and Uniqueness of Analytic Solutions of the Shabat Equation
نویسنده
چکیده
Sufficient conditions are given so that the initial value problem for the Shabat equation has a unique analytic solution, which, together with its first derivative, converges absolutely for z ∈ C : |z| < T , T > 0. Moreover, a bound of this solution is given. The sufficient conditions involve only the initial condition, the parameters of the equation, and T . Furthermore, from these conditions, one can obtain an upper bound for T . Our results are in consistence with some recently found results.
منابع مشابه
Nonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution
This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...
متن کاملOn existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملExistence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملTHE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION
This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.
متن کامل